Updated Good Practice Recommendations for outpatient parenteral antimicrobial therapy (OPAT) in adults and children in the UK

Ann LN CHAPMAN,1* Sanjay PATEL,2 Carolyne HORNER,3 Helen GREEN,2 Achyut GULERI,4 Sara HEDDERWICK,5 Frances SANDERSON,6 Susan SNAPE,7 Julie STATHAM,8 Elizabeth WILSON,9 Mark GILCHRIST,6 and R. Andrew SEATON10

1 University Hospital Monklands, NHS Lanarkshire, Airdrie, UK
2 Southampton Children’s Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
3 The British Society for Antimicrobial Chemotherapy, Birmingham, UK
4 Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
5 Belfast Health and Social Care Trust, Belfast, UK
6 Imperial College Healthcare NHS Trust, London, UK
7 Nottingham University Hospitals NHS Foundation Trust, Nottingham, UK
8 South Warwickshire NHS Foundation Trust, Warwick, UK
9 Manchester University NHS Foundation Trust
10 Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde, Glasgow, UK

*Corresponding author: Dr Ann Chapman, Department of Infectious Diseases, Monklands Hospital, Airdrie, Lanarkshire, ML6 0JS. Telephone: 01236 712134; Fax: none; Email: ann.chapman2@nhs.net

Short running title:

Keywords: ambulatory, children, community guidelines, home infusion therapy, intravenous antibiotics, stewardship.
Contents

1. Introduction .. 5
2. Methods .. 6
 2.1 Scope and purpose ... 6
 2.2 Stakeholder involvement ... 6
 2.3 Literature review ... 7
 2.4 Consensus process and guideline development .. 7
3. Recommendations .. 8
 3.1 OPAT team and service structure .. 8
 3.1.1 Formal OPAT programme ... 8
 3.1.2 OPAT ‘bundles’ ... 9
 3.1.3 OPAT team composition .. 10
 3.1.4 OPAT and telemedicine ... 11
 3.1.5 OPAT in new settings .. 11
 3.1.6 Evidence gaps ... 13
 3.2 Patient selection ... 16
 3.2.1 Identification of patients ... 16
 3.2.2 Selection criteria .. 16
 3.2.3 OPAT in hard to reach groups ... 18
 3.2.4 Evidence gaps ... 18
 3.3 Antimicrobial management and drug delivery .. 21
1. **Introduction**

OPAT (outpatient parenteral antimicrobial therapy) has been shown to be safe and effective for a wide range of infections in adults and children,\(^1\)\(^-\)\(^7\) and is now a routine part of patient care in the United Kingdom. First described over 40 years ago in the US, it was developed in several UK teaching hospitals around 20 years ago. Since then there has been a huge expansion in the number of UK OPAT services with a conservative estimate of >100 formal hospital-based services.\(^8\) The increase in OPAT services has been attributed to a number of factors, including financial pressures in the National Health Service (NHS), the focus on moving care out of acute hospitals, development of antimicrobial agents that can be administered once daily, advances in vascular access and infusion devices, and OPAT acceptance by patients and healthcare professionals.\(^9\)\(^,\)\(^10\) Furthermore OPAT is now being actively promoted as part of the UK government’s stewardship initiatives.\(^11\)

In the UK OPAT is now being delivered in an ever-increasing variety of clinical and non-clinical settings. In hospitals, OPAT services have traditionally been based in Infectious Diseases units and, less frequently, in specialist units such as those for patients with cystic fibrosis. Now, however, we see ambulatory IV antibiotic services in acute medicine or emergency department ambulatory care units or based in the community.\(^12\)\(^,\)\(^13\) Notably, in a 2015 BSAC survey of UK acute medicine and emergency department physicians, it was reported that the majority of patients with cellulitis treated with IV antibiotic therapy without hospital admission were not managed within a structured OPAT service and approximately half reported managing cellulitis without daily review for IV to oral switch and without a formal IV to oral antibiotic switch guideline (Seaton, RA; personal communication). As ambulatory care services develop it is important that the same OPAT governance procedures are in place to ensure appropriate and safe antibiotic prescribing. In addition to increasing variation in OPAT service delivery, self- or carer- administration is increasingly being used as a cost-efficient alternative to the infusion centre model.\(^6\)\(^,\)\(^14\)\(^,\)\(^15\)

There has been an increase in the complexity and co-morbidity of patients, and in the complexity of the infections being managed, with a move away from predominant short course therapy for skin and skin structure infections and urinary tract infections caused by antimicrobial resistant organisms to prolonged treatment courses for bone and joint infections, endocarditis and other complex deep-seated infections.\(^6\)\(^,\)\(^7\)\(^,\)\(^16\)\(^,\)\(^17\)

Over the last five to ten years there has been increasing recognition of the important relationship between antimicrobial stewardship (AMS) and OPAT. The prudent use of antimicrobial agents is now viewed as essential to maintain effectiveness of our antimicrobial armoury against increasing global antimicrobial resistance.\(^18\)\(^-\)\(^20\) OPAT has been recognised
as playing an important role in AMS and is one of the five options for ‘focusing’ antimicrobial therapy when reviewing therapy after an initial empirical approach. Interestingly, the role of OPAT services has been extended in some areas to the supervision of complex oral antimicrobial therapies, for example weekly toxicity monitoring for patients receiving linezolid. However OPAT also has disadvantages as regards AMS, in particular the potential use of agents with a broader antimicrobial spectrum than may be necessary due to logistics of once daily versus multiple daily dosing regimens or the unnecessary prolongation of IV therapy when oral antibiotics would be suitable. Furthermore it is recognised that OPAT is only one element of a patient’s management and that there needs to be consideration of the overall patient management plan, including other modalities of treatment such as surgical or radiological intervention, and also including consideration of the aims/goals of treatment, which may be long-term suppression or palliation rather than cure, particularly in the setting of prosthetic joint or vascular graft infections with antimicrobial resistant organisms.

Since the publication of the original UK OPAT Good Practice Recommendations (GPRs) for adults and children a number of other national OPAT guidelines and recommendations have been published. The aim of the original UK recommendations was to provide a useful resource for teams developing new services, as well as to provide a practical set of quality indicators for existing services. Considering the growing OPAT literature and developments in clinical practice it was felt timely to update the UK recommendations to ensure that they continue to provide appropriate guidance to OPAT services across a range of healthcare settings.

2. Methods

2.1 Scope and purpose

This update covers both adult and paediatric OPAT; specific recommendations relating to either adult or paediatric populations are highlighted. Updated good practice recommendations are presented as a literature update following the original literature reviews, with revised recommendations for each of the five key areas used in the original GPRs. Revised or amended recommendations are depicted using italics.

2.2 Stakeholder involvement

The British Society for Antimicrobial Chemotherapy (BSAC) was the host organization. Working party membership comprised consultants in antimicrobial pharmacy, adult and
paediatric infectious diseases (ID), medical microbiology and clinical nurse specialists in paediatric ID and OPAT.

2.3 Literature review

The Cochrane Library issues 8 of 12 (including the Central Register of Controlled Trials), CINAHL, EMBASE, PubMed, and Web of Science (Science Citation Index Expanded) databases were comprehensively searched from 1 July 2010 - 31 July 2017 (Table S1 available as Supplementary data at JAC Online). A further search covering the period 1 July 2017 – 31 August 2018, was completed shortly before the consultation process to capture any additional papers published. Terms were searched and collated for adults and run again with search terms specific for paediatrics (Table S1).

A total of 3007 references were identified from the first literature search (2463 references for adults and 544 for paediatrics) and 673 references in the second search (Figure 1). An initial screen identified non-relevant references (defined as those references with no mention of intravenous antibiotics or outpatient therapy); conference abstracts, and duplicate references, which were removed from further appraisal. Detailed screening using the abstract was completed by members of the core working group. Remaining references were divided into several key areas relating to the areas of the previous GPRs (Figure 1). Where references were deemed to be relevant to all key areas, they were allocated to the ‘General’ category; references related to the use of OPAT for specific infections were allocated to the ‘OPAT for specific infections’ category, and papers relating specifically to the paediatric population were categorised into a ‘paediatrics’ category. Once references had been divided into the appropriate key groups, full text articles in the English language were obtained and reviewed. Where evidence on a particular recommendation was lacking in the literature this was noted. As most reviewed references described non-interventional, observational studies or case series, levels of evidence have not been included in this review.

2.4 Consensus process and guideline development

A core working group was established (AC, MG, RAS, SP, CH). Clinicians from across the range of professional groups involved in OPAT (nursing/ medical/ pharmacy) were invited to provide an appraisal of the literature identified by the searches. The evidence appraisal was reviewed in detail by the core working group at a meeting in May 2018, and subsequently by telephone and email communication. Changes to the initial GPRs were made (annotated as italic text) and new GPR statements were written. The revised recommendations were circulated to all reviewers for sense-checking and to ensure that there were no omissions.
Following further revision, the draft updated GPRs were sent to a comprehensive list of stakeholders and uploaded to the BSAC website (www.bsac.org.uk) and underwent a formal 4-week consultation process. The GPRs were revised in light of the comments received: there were XX revisions to the recommendations.

3. Recommendations

3.1 OPAT team and service structure

3.1.1 Formal OPAT programme

The previous UK GPRs stressed the importance of a formal OPAT service structure with clear clinical and managerial accountability. Many recent publications supported this view.27,31 Heintz and colleagues prospectively estimated the effect such a strategy has on patient safety and cost effectiveness.32 Of 569 referrals in 536 patients enrolled into an OPAT programme, involvement of the OPAT team resulted in safety, regimen simplification or efficacy interventions for OPAT courses in 56.1%, 40.6% and 26.8%, respectively. Interestingly, OPAT team review resulted in a significant improvement in interventions related to safety (64% vs 48%) and efficacy (36% vs 21%) but not regimen simplification compared with those who were not reviewed by the OPAT team. This suggests that knowledge of antimicrobials alone will not recoup all the value of OPAT team involvement. OPAT interventions may relate to a broader holistic assessment of the patient and the infection and/or more detailed assessment of social and logistical factors.32 Yan et al. (2016) retrospectively described a Canadian cohort of 104 patients discharged to receive intravenous antimicrobials without a formal OPAT programme.33 Although 56 did receive post discharge follow up from an ID physician, 56% returned to emergency department (ED) within 60 days of discharge, while 26% required readmission: 48% of the returns were due to infection relapse or treatment failure, and 23% could be attributed to OPAT-related complications.33 The implication is that with a formal OPAT programme, these return visits to the ED could be avoided with careful patient selection and appropriate and timely monitoring and intervention during follow up.

There was further evidence that many OPAT services worldwide lack a formal service structure. Lane et al. (2014) conducted a survey of US ID physicians and concluded that OPAT is frequently delivered by non-specialist OPAT teams without systems for tracking adverse event or monitoring patient outcomes.34 A further survey of US ID physicians in 2015 reported that only 56% of respondents were part of a formal OPAT programme.17
Respondents reported difficulties in communication between hospital physicians and community teams delivering OPAT, and variability in blood test monitoring and follow up.

3.1.2 OPAT ‘bundles’

Several papers reported the impact of incorporating formal processes into an OPAT service. Keller *et al.* (2013) developed what they termed an ID transition service, comprising a physician, specialist nurse and pharmacist, and evaluated its impact on the care and outcomes of 488 OPAT patients. After the implementation of the transition service, readmissions decreased from 38.1% to 27.9%. However, importantly, the authors had also included a control group of patients who had been discharged on OPAT without formal ID consultation. Readmission rates also fell in this group with no significant impact of the transition service per se. Similarly, implementation of the transition service had no significant impact on emergency department visits. However the transition team care was associated with improved process of care outcomes, such as fewer antimicrobial therapy errors, improved laboratory test receipt and increased follow up visits.

Similarly, Nguyen (2010) described an acute infection management service designed to transition patients with infections safely from the acute hospital setting to receive OPAT. In this study, 80 patients, of whom 66% had a diagnosis of cellulitis, received the service over 13 months, generating 618 follow up visits. The service was safe with only two patients requiring admission, one for fever and one for transportation problems.

Muldoon *et al.* (2013) and Madaline *et al.* (2017) report a more comprehensive approach to OPAT using OPAT ‘bundles’: where a bundle has been defined as ‘a set of practices that together should improve outcomes’. Muldoon and colleagues outline a theoretical approach using a bundle comprising 6 components, based on the IDSA guidelines and UK GPRs: 1) patient identification/selection; 2) ID consultation; 3) patient/family education; 4) care transition; 5) outpatient monitoring, and 6) OPAT program measures.

In addition to the recommendations described in the initial UK GPRs, four further recommendations are made: 1) the types of information to be given to the patient or carer regarding OPAT, relating to potential complications, side effects, risks and benefits; 2) that the follow up appointment should be handed to the patient prior to discharge from hospital; 3) specific mention of line removal at end of therapy and 4) consideration be given to developing novel approaches to patient education, for example mobile phone applications or simple cartoon-based educational materials.
Madaline and colleagues (2017) used a very similar bundle in a pre- and post-intervention study, but without a contemporaneous control group. Those patients receiving the bundle demonstrated a lower 30 day readmission rate when compared with the previous standard of care (13% vs 26.1%) and improved monitoring of blood tests and attendance at follow up appointments, but no significant difference in emergency department attendances. The theoretical paper of Halilovic et al. (2014) on risks associated with OPAT further breaks down the bundle described by Muldoon and colleagues into key elements, designating an OPAT team member to take responsibility for each.

3.1.3 OPAT team composition

The previous UK OPAT GPRs made a recommendation about the composition of the OPAT multidisciplinary team (see recommendation 1.3 below) and several more recent papers supported this recommendation. In a retrospective case-controlled study, Shah et al. (2015) investigated 99 OPAT patients, of whom 60 were assessed by an ID physician and 39 received non-ID physician care. Those assessed by ID physicians were 3.9 times more likely to adhere to monitoring guidance. The addition of an ID pharmacist to the non-ID physician care increased the adherence to monitoring from 35.9% to 100%, underlining the critical importance and additional value of an antimicrobial pharmacist in the OPAT team. Shrestha et al. (2012) retrospectively looked at 263 potential OPAT patients referred to ID physicians over a 3-month period. In 260 of 263 episodes the authors concluded that value was added by the ID physician: antimicrobial treatment was optimized in 84%, significant patient assessment was made in 52% and additional medical care contribution was made in 71%. In 33% of cases, an intervention was made in all three of these domains. Perhaps most critically, OPAT was deemed not necessary in 27% (60% of these patients were changed to oral antimicrobials and for 40% no antimicrobial was deemed necessary). Hersh and colleagues (2018) also demonstrated a 24% reduction in use of OPAT in a paediatric cohort following introduction of a process of expert review.

OPAT must be guided by the principles of antimicrobial stewardship (AMS) and should operate within an AMS programme. In a retrospective observational study, Hase and Hosokawa (2015) described OPAT use of ceftriaxone in a Japanese hospital without a formal OPAT team. A total of 268 patients received ceftriaxone with the courses curtailed due to readmission (10.8%) and death (4.5%). Disappointingly, ceftriaxone was used empirically in 92.2%, blood cultures were not performed in 62.3% and no cultures of any type were performed in 30%. For children managed within paediatric OPAT (pOPAT) services, there is also increasing evidence that in the absence of paediatric antimicrobial stewardship team oversight, children have higher rates of bug/drug mismatches, drug dosing
errors, readmission rates and less rigorous laboratory monitoring of drug side-effects.44 Embedding paediatric antimicrobial stewardship within OPAT services has been shown to reduce the duration of IV antibiotics, through earlier cessation of antibiotics or prompt IV to oral switching.43, 45 This is especially relevant when children are being ambulated directly from the emergency department or paediatric assessment unit as part of an admission avoidance strategy.46

3.1.4 OPAT and telemedicine

Three studies where telemedicine was used in the management of patients receiving OPAT were reviewed. Bradford and colleagues (2013) reported the use of telemedicine for remote monitoring of paediatric oncology patients receiving home IV therapy administered by parents in comparison to administration in the home by a visiting nurse or administration in an infusion centre. They found that the telemedicine model allowed the delivery of safe care with significant cost reduction compared to the other treatment strategies.47 Greenup \textit{et al.} (2017) used telemedicine to provide support to Hospital-in-the-Home nurses when discharging patients from the service. The use of telemedicine to obtain clinical advice from a hospital-based physician allowed patients to be discharged from the service without the need for in person consultation and had no significant impact on 28-day readmissions.48 Thirdly, Tan \textit{et al.} (2017) reported the use of telemedicine in the management of 88 episodes of OPAT in 83 patients over a wide geographical area around Perth, Western Australia. OPAT was initiated in hospital and ongoing treatment was administered by local nursing services, supported by once weekly videoconference with an ID physician. Clinical outcomes were comparable to conventional OPAT and the authors estimated that over 100,000km of travel were avoided.49 Telemedicine is likely to be used increasingly in future50 and should be incorporated into OPAT programmes systematically with appropriate plans for escalation / safety-netting.

3.1.5 OPAT in new settings

OPAT in the UK has predominantly been delivered by teams based in acute hospitals. Such services tended to deliver OPAT through one or more of three models: the ‘infusion centre’ model where patients attend an OPAT facility daily; the visiting nurse model where a nurse (from either primary or secondary care) delivers therapy in the patient’s home; or the self-administration model, where the patient or a carer are taught to administer therapy with regular supervision from the OPAT service. During the early years of OPAT in the UK, OPAT services were usually run by Infectious Diseases units, but increasingly other specialities are setting up OPAT. In particular there are now reports in the literature of services based in
acute medicine or emergency ambulatory care units. Yan et al. (2011) described a predominantly infection nurse-led service in a British hospital where access to medical care was via the nurse through the emergency department physicians. In this retrospective cohort study, 140 patients received OPAT either returning to hospital daily (n=94) or in their own home through a district nursing visit (n=46). The service was safe with a failure/complication rate of 5.7% and hospital readmission rate of 3.6%. The mean duration of OPAT was 4.4 days with the predominant diagnosis cellulitis.¹³

In addition to increasing diversity in OPAT providers in secondary care, another key development has been the establishment of OPAT based within primary care organisations and delivered in the community. Antimicrobial therapy may be initiated and carried out exclusively in community, or alternatively may be initiated in hospital and transferred to a community-based OPAT service.¹⁰ Several papers describe such services.¹², ⁵¹-⁵⁴ Nazarko (2013) outlines the advantages and potential disadvantages of developing a specialist IV therapy team or incorporating OPAT into the day to day activity of established community nurses.¹² A dedicated IV therapy team would provide enhanced expertise in management of different devices and antimicrobial agents and in practical skills such as venepuncture and cannulation. Furthermore, it may be easier to train a small team to recognise clinical deterioration. Gray et al. (2018) used patient scenarios to investigate how Hospital-in-the-Home nurses recognise and respond to the deteriorating patient; however, service capacity may be limited by a small team, particularly over large geographical areas. The use of the larger pool of community nurses would provide greater capacity and also allow nurses to deliver more than one type of care to housebound patients at the same visit, for example, wound or ulcer dressings, insulin injections, etc. However, community nurses may be unfamiliar with IV therapies and require theoretical and practical training; there is also the issue of maintaining competency. Whatever the model for antimicrobial administration, as with services based in secondary care, the involvement and oversight of a full OPAT team is essential, including a lead OPAT nurse, antimicrobial pharmacist and infection specialist.⁵⁴, ⁵⁵

It is also essential that a responsible physician is clearly identified for every patient: this may be a primary care doctor or hospital specialist. Mace et al. (2018) examined the impact of introducing a dedicated OPAT team to a paediatric Hospital-in-the-Home service in Australia and reported improved adherence to monitoring guidelines, reduced readmissions and fewer patients on prolonged antimicrobial therapy, demonstrating the importance of medical governance in a nurse-led service.⁵⁶

In establishing a community-based OPAT service, key issues to consider include workload and capacity, dose frequency, use of boluses or infusions, line insertion and care, arrangements for prescribing and dispensing antimicrobials, for clinical reviews and for
escalation if complications occur. Several authors reported the use of ‘OPAT kits’ made up
by local pharmacy manufacturing units and containing all medications, diluents and
consumables required for a week, tailored to each patient and type of vascular access
device. Barker and Lyden-Rodgers (2016) described an audit of 26 patients
receiving intravenous antibiotics in their homes and concluded that cost savings in nursing
time may be possible if single as opposed to paired visiting community nurses deliver bolus
doses in comparison to infusions. Although community IV therapy services may deliver a
range of parenteral agents, such as bisphosphonates, iron, chemotherapy, blood products,
etc, involvement of an infection specialist and antimicrobial pharmacist in the care of patients
receiving IV antibiotics are essential in ensuring that antimicrobial stewardship is prioritised.
Outcome monitoring in general may be more challenging in the community context where
patients are under different primary care physicians and teams of nurses, and also needs to
be considered when establishing a community-based service.

3.1.6 Evidence gaps

One key evidence gap relates to the appropriate time commitment for OPAT team members.
Financial pressures within healthcare systems may have an impact on the number of staff
being employed to deliver OPAT; data on appropriate ratio of patients to OPAT specialist
nurses in particular would be helpful in justify the funding required to deliver an OPAT
service. Review of the UK BSAC OPAT National Outcomes Registry System (NORS)
(http://opatregistry.com) suggests that for hospital-based OPAT services per 100 episodes
the average establishment for nursing is 1.5 whole time equivalents (WTE), medical 0.3
WTE, and specialist pharmacist 0.25 WTE.
1.1 In non-inpatient settings, IV antibiotics should be delivered within a formal OPAT service with clear pathways for early discharge or admission avoidance, in order to ensure patient safety.

1.2 The OPAT team should have clear managerial and clinical governance lines of responsibility.

1.3 The OPAT team should have an identifiable medically qualified lead clinician. All OPAT team members should have identified time for OPAT in their job plans.

1.4 The OPAT multidisciplinary team should include, as a minimum, a medically qualified clinician (e.g. an infectious diseases physician, internal medicine specialist, paediatrician or a surgeon with an infection interest), a medically qualified infection specialist (infectious diseases physician/paediatric infectious diseases specialist or clinical microbiologist), a specialist nurse with expertise in parenteral drug administration and intravascular access device selection and placement, and a clinical antimicrobial pharmacist.

1.5 A management plan (including use of standardized treatment regimens or specific patient group directions) should be agreed between the OPAT team and the referring team for each patient and this should be documented. This plan should include other relevant specialists and other possible treatment modalities, e.g. surgical or radiological intervention for source control. It should also state the treatment goal.

1.6 OPAT teams should develop local algorithms for novel treatment strategies, for example, longer acting antimicrobials, new devices, etc.

1.7 OPAT services should consider the role of telemedicine for supporting patients at home.

1.8 Clinical responsibility for patients receiving OPAT is shared between the referring clinician and the OPAT clinician unless otherwise agreed.

1.9 There should be communication between the OPAT team, the patient’s general practitioner, the community team (when appropriate) and the referring clinician. As a minimum this should include notification of acceptance onto the OPAT programme, notification of completion of therapy and notification of further follow-up/management plan post OPAT.

1.10 The written communication should be clear, multi-disciplinary (e.g. an integrated care pathway) and available and accessible to all relevant members of the clinical team at all times including out of hours.
Figure 2. OPAT team and service structure. Text in *italics* donates a previous recommendation that has been amended.
3.2 Patient selection

3.2.1 Identification of patients

In the past, identification of suitable patients for OPAT was often through direct referral from inpatient teams or ad hoc referrals from other infection specialists. With increasing experience with OPAT and demonstration of its safety and patient focus, there is a realisation that we must move from a passive or ‘opportunistic’ approach to identifying suitable patients to a more active approach. Examples include participation in multidisciplinary clinical meetings in key specialties such as the diabetic foot service or orthopaedics. O’Hanlon and colleagues (2017) describe 14 patients with diabetic foot infections, suggesting that nurses with OPAT training can be useful case finders for patients who may be suitable for OPAT within the diabetic clinic.51

Patients may also be identified as potentially suitable for OPAT actively through infection initiatives such as bacteraemia reviews and antimicrobial ward rounds. One study demonstrated an increase in the numbers of patients receiving OPAT through the use of the benefit of using a bacteraemia database to identify patients who may be suitable for OPAT once stable.57 Dryden et al. (2012) describe infection team review of inpatients receiving antimicrobial therapy in six UK hospitals. Of 89 patients who were suitable for discharge, 55 were suitable for oral outpatient treatment, 24 had their antibiotics stopped and 10 would have required OPAT.58 This study demonstrated the value of an infection team in identifying patients appropriate for OPAT, but more significantly in recommending the use of oral agents over IV therapy where clinically appropriate. Conant et al. (2014) also reiterated the importance of involvement of an infection specialist in optimising antimicrobial therapy, ensuring appropriateness of patients for OPAT and contributing to antimicrobial stewardship.59

3.2.2 Selection criteria

As with the last GPRs, many papers concluded that careful patient selection was critical to improving outcomes and reducing risk of OPAT. Selection involves consideration of patient-specific criteria such as ability to understand and consent to OPAT, appropriate home circumstances, ability to attend for OPAT, support from family members, access to a primary care physician etc. Having no primary care provider was also a risk factor for OPAT complications.60, 61
Infection-related criteria are also important in patient selection, for example the site and severity of infection, presence of complications of infection, prior duration of antimicrobial therapy, initial response to treatment and availability of oral antibiotic options. Underwood et al. (2018) reported that of 781 patients referred to their OPAT service, 31% were assessed as not requiring IV therapy following infection specialist review.

There is also increasing evidence that patient selection should move beyond application of rigid criteria but should take into consideration additional factors that may influence likelihood of OPAT failure or complications. Schmidt et al. (2017) found that risk of unplanned hospitalisation in OPAT patients was increased in older patients with more co-morbidities: for each additional point in the Charlson co-morbidity index the risk of unplanned readmission increased by 5%. They also found that risk of unplanned hospitalisation varied depending on the type of facility in which patients were receiving OPAT. It is not clear if this relates to patient factors determining the need for a specific OPAT facility, or to factors relating to the facility itself, for example expertise of staff or robustness of arrangements for monitoring blood tests. Whatever the reason, Schmidt and colleagues (2017) suggested that the Charlson co-morbidity index may be useful both in patient selection and in determining the most appropriate site or model of OPAT. Duncan et al. (2013) retrospectively reviewed 80 episodes of OPAT for infective endocarditis and found that on multivariate analysis cardiac or renal failure were independently associated with OPAT failure. Similarly, Seaton et al. (2011) found that presence of diabetes or vascular disease were predictors of poorer outcomes in 963 patients with skin and soft tissue infection managed via OPAT. However, Allison et al. (2014) found an association between 30-day readmissions and four factors: increasing age, use of aminoglycosides, presence of resistant organisms and number of prior hospitalisations in preceding year; but found no impact of co-morbidities. These findings may have been due to differences in population sizes or in screening protocol for acceptance for OPAT and demonstrates the difficulty in comparing studies and also the need for further work to look at predictors of poor outcomes in OPAT.

In assessing appropriateness of a patient for OPAT there may also be considerations relating to their longitudinal progress. As an example, a recent review of the paediatric cystic fibrosis (CF) literature confirmed that no randomised controlled trials have been conducted comparing inpatient versus OPAT management of children with cystic fibrosis. Cohort studies have yielded conflicting results in terms of patient/parent satisfaction and clinical outcomes. It is difficult therefore to offer clear recommendations about the safety and effectiveness of pOPAT in children with CF and the authors suggest a more holistic view of the likely benefits to the child/young person/family regarding the potential impact of pOPAT on their long term respiratory function.
3.2.3 OPAT in hard to reach groups

OPAT was offered to patients with mental health diagnoses, people who inject drugs (PWIDs) and homeless patients by a few centres. Ho et al. (2010) describe successful treatment of 29 PWIDs at their centre in Singapore; however, they used strict selection criteria and standardised measures to prevent and detect line misuse, including tamper-detectable line dressings. Ho et al. (2010) describe successful treatment of 29 PWIDs at their centre in Singapore; however, they used strict selection criteria and standardised measures to prevent and detect line misuse, including tamper-detectable line dressings. Beierle et al. (2016) used OPAT successfully for treatment of infections in homeless people, most of whom were PWIDs; however, OPAT was delivered in a medical respite facility with close supervision, an overnight curfew and access to substance misuse services and opioid replacement therapy. The importance of careful patient selection was highlighted by several authors; Camsari and Libertin (2017) concluded that they would offer OPAT to PWIDs only if they had been abstinent for over 12 months. Buehrle et al. (2017) stressed the importance of a comprehensive support package: in their study only 39% of PWIDs completed OPAT successfully due to a combination of clinical and social factors. They, and others, have concluded that recent or ongoing injection drug use may be considered a contraindication to OPAT and that there was a need for further research into the reasons for the high rates of OPAT failure, the effectiveness of oral therapy as an alternative to OPAT, and the benefit of residential addiction treatment alongside OPAT. Hernandez et al. (2016) also identified social factors, such as missed appointments or loss of temporary accommodation, as important in success or failure of OPAT in their retrospective study of 43 homeless people, 33 (77%) of whom completed treatment successfully. Longer acting antimicrobial agents may also be of benefit in PWIDs and other hard to reach groups to reduce the reliance on patient compliance with daily therapy and to avoid long line placement.

3.2.4 Evidence gaps

As noted above more prospective research is required to enable us to predict more accurately which patients are most likely to have a successful, or unsuccessful, outcome to their OPAT episode. There is also a paucity of paediatric data on patient selection and risk stratification. Although there is always a need for clinical judgement, it would be helpful to develop evidence-based algorithms to support patient selection in future.

The previous GPRs included a recommendation on risk assessment for venous thromboembolism (VTE) in patients undergoing OPAT following an inpatient stay. The updated literature review identified one paper on risk of VTE with OPAT. This was a retrospective review of 780 OPAT episodes over a three-year period; no patients received VTE prophylaxis. Two patients developed deep vein thrombosis within 90 days of OPAT,
giving a VTE incidence of 0.26%. The authors concluded that patients commencing OPAT should not be assessed routinely for VTE prophylaxis using an inpatient algorithm. Although these data are reassuring, patients on OPAT do have significant infections and are therefore at increased risk of VTE compared to the general population66 and it would be useful to have further prospective data on risk of VTE and optimal assessment strategy for prophylaxis.
2.1 OPAT should be part of a comprehensive infection and antimicrobial stewardship service, in order to maximise opportunities for identification and selection of suitable patients and to optimise appropriate management and minimise unintended consequences of antimicrobial therapy.

2.2 It is the responsibility of the infection specialist to agree specific infection-related inclusion and exclusion criteria for OPAT. These should incorporate specific infection severity criteria where appropriate.

2.3 There should be agreed and documented OPAT patient suitability criteria incorporating physical, social and logistic criteria. These should take into account additional risk factors for treatment failure, for example, co-morbidities, lifestyle issues, etc. These should be documented for each patient.

2.4 Initial assessment for OPAT should be performed by a competent member of the OPAT team.

2.5 Patients and carers should be fully informed about the nature of OPAT and should be given the opportunity to decline or accept this mode of therapy.

2.6 All patients who have been assessed as being at risk of venous thrombosis as inpatients should be considered for further prophylaxis during OPAT if assessed as having ongoing risk.

Figure 3. Patient selection. Text in italics donates a previous recommendation that has been amended.
3.3 Antimicrobial management and drug delivery

3.3.1 Continuous antimicrobial infusions

Four papers presented data on use of continuous infusions of amoxicillin, meropenem, vancomycin and clindamycin respectively, presenting data on clinical outcomes and drug stability. All reported relative success; however, there were questions over antibiotic degradation and the potential need for therapeutic drug monitoring. Voumar and colleagues (2018) also reported that OPAT using elastomeric pumps for the continuous administration of four antibiotics (flucloxacillin, cefepime, vancomycin and piperacillin/tazobactam) was efficacious and safe. Drug concentration measurements, considered a proxy for efficacy, confirmed adequate circulating antibiotic exposures consistent with the observed high rate of therapeutic success.

Within the wider OPAT arena concerns have been expressed about the lack of antimicrobial stability data, particularly within elastomeric devices. The UK BSAC OPAT initiative conducted a separate literature review into antimicrobial stability within elastomeric devices. It found no published studies that comply with UK national standards for stability testing. As a result of this work an antimicrobial stability testing workstream was created within the UK BSAC OPAT initiative. Two stability studies have been published to date. Flucloxacillin was demonstrated to be chemically stable when reconstituted with 5% citrate buffer at up to 14 days storage and for an additional 24 hours at “body worn” temperature. Flucloxacillin is therefore suitable for extended infusion via an elastomeric device within an OPAT setting. In contrast, meropenem showed significant degradation with or without buffering and so is not suitable for extended infusions in the OPAT setting. BSAC drug stability testing studies are open-access and designed to allow OPAT services to use these agents where the clinical need exists. Further stability studies have been commissioned for piperacillin/tazobactam, ceftazidime and ceftolozane/tazobactam.

3.3.2 Infusion devices

More generally, some papers explored the use of new devices. Oliver (2016) reviewed benefits and disadvantages of elastomeric devices in general and described experience with one type of elastomeric device, with very positive nurse evaluations. Saillen et al. (2017) reported high levels of patient satisfaction with elastomeric devices, particularly from patients who were self-administering via an elastomeric device, as opposed to those who had devices changed by visiting nurses or at the OPAT unit. Hobbs et al. (2017) present the protocol for a study to evaluate patient and nurse satisfaction with electronic and elastomeric
portable infusion pumps used at home (CHID study), which may be useful in guiding their further use.97

In contrast, Pandya \textit{et al.} (2017) reported 14 adverse events in 10 of 31 patients receiving IV antibiotics by elastomeric device infusion. Five adverse events were related to the infusion device, including device failure and leakage. These adverse events resulted in additional telephone calls and nurse visits.98 This reinforces the need for a robust OPAT service structure with escalation pathways including flexibility to provide specialist patient input when needed, rather than defaulting to the Emergency Department where staff may be unfamiliar with the device.99

\textbf{3.3.3 Vascular access}

The literature search identified only one adult paper relating to vascular access. Bedford and Waterhouse (2017) described the development of an out of hospital nurse-led service for insertion of peripherally inserted central cannulas (PICCs) insertion using ECG-guided central line tip placement.100 This new technology removes the need for radiological or fluoroscopic confirmation of the correct position of the PICC tip within the lower third of the superior vena cava, and therefore the need for patients to attend hospital for their procedure. The authors described the process for doing this, including patient consent and safety measures, and reported 55 successful community-based insertions without complications. The ability to insert long term venous access in a community setting will facilitate the expansion of community-based OPAT, as described in the service structure section above.

Four papers reviewed line complications in adults.64, 101-103 Barr \textit{et al.} (2012) retrospectively analysed line infections and other line events in 854 patients with midline catheters, peripherally inserted central catheters or tunnelled central venous catheters (TVCV). Incidence of line-related complication was 3.6 per IV catheter days, the majority of which were non-infection related. Incidence of line infection was 2.3\% (0.53 per IV Catheter days) and on multi-variate analysis was associated with duration of IV line placement with a 1.2\% odds increase per additional day of IV therapy. Line type (midline versus central line) was not independently associated with risk of infection. Incidence of other line events (including phlebitis, leakage, extravasation, occlusion or unplanned removal) was 14.6\%. As with previous studies patient self-administration of OPAT was not associated with an increased risk of line complications, although use of multiple-daily dosing of flucloxacillin and use of a midline versus a tunnelled central line were.101 Shrestha \textit{et al.} (2016) reported line complications in 9\% of OPAT courses, most frequently line occlusion, with increasing risk of complications with duration of OPAT. Line infection occurred in less than 1\% of OPAT courses overall.103 Lam \textit{et al.} (2018) reported that prolonged OPAT, use of double lumens
and administration of penicillin G and cloxacillin appeared to increase the risk of peripherally
inserted central catheter (PICC) occlusion and suggested that these factors be considered
by OPAT teams when choosing lines and therapeutic agents.\(^{102}\) Finally, Underwood et al.
(2018) described 544 OPAT episodes, 5.9% of which were complicated by line-related
complications (5.7 per 1000 IV catheter days). Most complications were non-infectious. In
contrast to other published studies the authors noted that self-administered antimicrobials
were more likely to be associated with vascular device-related complications. As in other
studies, non-radiologically inserted midline catheters were associated with higher rates of
complications.\(^{64}\)

In pOPAT the data suggest that PICC lines complications are less common than
previously reported.\(^{104, 105}\) Recent studies have described an 8-15% complication rate for
PICC lines used for the administration of IV antibiotics to pOPAT patients; infections are
responsible for less than 25% of these adverse events.\(^{5, 106, 107}\) More data are required about
the rate of adverse events associated with midline catheters before they can be routinely
recommended for use within pOPAT services. A complication rate of 43% has been
described in one small study.\(^{108}\) A dedicated paediatric IV line service may help to provide
safer and more patient-centred IV access.\(^{109}\)

3.3.4 Antimicrobial agents

Several papers identified new and existing antimicrobial agents being used within the OPAT
setting. One of the key areas of growth which represents a step change in antimicrobial
therapy via OPAT has been the development of long-acting semi-synthetic glycopeptides,
such as oritavancin\(^{81, 84, 110}\) and dalbavancin.\(^{83, 111, 113}\) These agents may be particularly useful
for patients who may not otherwise be suitable for OPAT, for example where there are
concerns about compliance issues or line misuse. They could also be useful in OPAT
services with limited capacity due to their infrequent administration and impact on nurse
workload. In using these longer acting agents the challenge for OPAT services will be to
develop clear clinical pathways and individual management plans, ensuring adequate
oversight of clinical progress.\(^{82}\) Televancin,\(^{114}\) tedezolid,\(^{115}\) and long acting echinocandins\(^{116}\)
are new agents which offer potential alternative antimicrobial therapeutic agents.

There has been a growth in the literature surrounding more traditional antimicrobial
therapies within OPAT, mainly around dosing and adverse events. Experience has grown
with daptomycin,\(^{117-120}\) teicoplanin\(^{121, 122}\) and ertapenem.\(^{123-125}\) Adverse events have been
reported with ertapenem and tigecycline\(^{124-126}\) adding to the literature around ensuring there
is close monitoring and follow up of OPAT patients.
3.3.5 Antimicrobial stewardship

The OPAT team is integral to the development of the antimicrobial plan and judgements may have to be made about the use of broader spectrum once daily agents to facilitate OPAT where a narrower spectrum agent with multiple daily doses would be used in an inpatient setting. The use of continuous infusion pumps and elastomeric devices may provide a solution to this, as long as robust stability data exist. Similarly, it is important that new long-acting agents are integrated into the OPAT service in a systematic way, as described earlier.

Optimal antimicrobial stewardship also includes timely switch from IV to oral antibiotics (Table 1) and this should be considered both at the point of referral to OPAT as well as during a course of OPAT. McMullan et al. (2016) reviewed current evidence on duration of IV antimicrobials and optimal timing of IV to oral switch in children. Availability of OPAT may paradoxically result in excessively long IV antimicrobial courses unless subject to antimicrobial stewardship; comparisons of antibiotic durations for specific pathologies between OPAT centres may provide useful information to guide clinical practice where evidence about timing of IV to oral switch is lacking. As in the previous GPRs many papers stressed the importance of the OPAT team in antimicrobial stewardship. There is a key role here for the antimicrobial pharmacist in assessing PK/PD applicability of oral agents and anticipating potential drug-drug and drug-host interactions, antibiotic compliance and potential adverse events and monitoring needs and how these are best addressed in an out-of-hospital setting.

Table 1: Evidence for oral versus IV antimicrobial therapy in selected infections.

<table>
<thead>
<tr>
<th>Infection Type (Population)</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone and joint infections (adults)</td>
<td>Multi-centre UK-wide randomised study of oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA). In a heterogeneous group of patients with device-related and non-device-related bone and joint infection who had received < 7 days of initial IV therapy, randomisation to carefully selected oral antibiotic therapy was found to be non-inferior to continuation of intravenous therapy with 86% success observed in both groups at one year. In addition significantly lower rates of line-related complications and lower treatment costs were observed in the oral-treated group</td>
</tr>
</tbody>
</table>
Bone and joint infections (children) \(132,133\) Increasing evidence that p-OPAT is only indicated for a minority of children with bone and joint infections. The majority of patients should be managed with an early IV to oral switch.

Endocarditis \(134\) Clinically improved patients with endocarditis were randomised to early IV to oral switch or standard therapy with exclusive IV antibiotics. Early transition to oral therapy was found to be non-inferior to IV therapy. This study population would be typical of the group usually managed via OPAT therefore appropriate oral therapy may be a suitable alternative to OPAT for selected low risk patients.

Intra-abdominal infection \(135\) Oral antibiotics had equivalent outcomes and incurred fewer charges than IV antibiotics following appendicectomy.

Lower urinary tract infections (adults) \(136\) Non-inferiority of oral fosfomycin compared to IV ertapenem for the treatment of lower urinary tract infections caused by ESBL-producing Enterobacteriaceae.

Pyelonephritis (children) \(137\) No difference between oral antibiotics (10 to 14 days) and IV antibiotics (three days) followed by oral antibiotics (10 days) with respect to duration of fever or subsequent renal damage.

Pleural empyema (children) \(138\) Discharge on IV antibiotics offers no benefit over discharging children with empyema on oral antibiotics.

3.3.6 Clostridium difficile risk in OPAT

The use of broad-spectrum agents such as ceftriaxone or ertapenem leads to concern about risk of *Clostridium difficile*-associated diarrhoea (CDAD). The literature review identified several studies that examined risk of CDAD with OPAT in adults. Aberdein and Chapman (2015) cross-referenced OPAT and hospital microbiology databases to identify patients who had had both OPAT and CDAD over a 5-year period. Of 1514 patient episodes and 16,750 OPAT days, 13 patients developed CDAD between two days of commencing and 84 days of ceasing OPAT. All but one patient had risk factors other than OPAT for CDAD, including prior hospitalisation and oral antibiotics from their General Practitioner. The rate of ‘definitely OPAT-attributable CDAD’ was equivalent to 6 cases per 100,000 OPAT days. The comparable rate for hospital inpatients nationally at this time was 54 per 100,000 bed.
Duncan et al. (2012) reviewed use of ceftriaxone for OPAT and concluded that CDAD occurred in approximately 0.1% of OPAT episodes. A study in the United States reported five cases of CDAD in a cohort of 681 patients, an incidence of less than 1 per 1000 patient days. All five patients had had prior hospitalisation and four were on concomitant acid suppressive therapy.

3.3.7 Evidence gaps

As noted above, there is a need for further data on antimicrobial stability over prolonged periods in elastomeric devices or infusion pumps and the Drug Stability Testing Workstream of the BSAC OPAT UK Project will add to existing knowledge in this area. The updated literature search provided no new data on the safety of administering the first dose of antibiotic in the home setting. However, with the growth of OPAT services based entirely in the community, there is increasing evidence of the safety of this approach, as long as the nurse administering therapy is trained and equipped to manage adverse reactions including anaphylaxis.
3.1 Oral antimicrobial therapy should always be used in preference to intravenous therapy where these have equivalent efficacy unless there are other relevant factors, e.g. toxicity, allergies or drug/drug or drug/patient interactions.

3.2 The infection treatment plan should be agreed between the OPAT team and the referring clinician before commencement of OPAT.

3.3 The treatment plan is the responsibility of the OPAT infection specialist, following discussion with the referring clinician. It should include choice and dose of antimicrobial agent, frequency of administration and duration of therapy, and where appropriate should take into account flexibility based on clinical response.

3.4 Antimicrobial choice within OPAT programmes should be subject to review by the local antimicrobial stewardship programme.

3.5 It is the responsibility of the OPAT team to ensure correct and continued prescription of antimicrobials during OPAT, but prescriptions may be written by the referring team under the direction of the OPAT team. Pre-agreed drug choice and dosage for certain conditions (e.g. soft tissue sepsis in the context of a patient group direction) is acceptable.

3.6 It is the responsibility of the OPAT team to advise on appropriate follow up for toxicity, compliance and outcome monitoring for those patients recommended by the OPAT team to receive complex oral antibiotic regimens (in place of IV therapy). Follow up of such patients may be best addressed in the immediate post discharge phase through existing multi-disciplinary OPAT services working within the GPR framework.

3.7 Prescribing for individuals within OPAT should be assessed by an antimicrobial pharmacist.

3.8 Storage, reconstitution and administration of antimicrobials must comply with published Royal Pharmaceutical Society/Royal College of Nursing standards and with local hospital clinical pharmacy standards.

3.9 The OPAT team is responsible for the choice of intravascular access for each patient.

3.10 Insertion and care of the intravascular access device must comply with published RCN standards, with local and national infection prevention and control guidance.
3.11 A member of the OPAT team with the appropriate competencies is responsible for selection of the drug delivery device, and use of these must comply with published RCN standards and local hospital guidelines.

3.12 *Antimicrobial agents should only be used in pumps or elastomeric devices if there are robust stability data meeting the standards of the NHS ‘Standard Protocol for Deriving and Assessment of Stability’*.93

3.13 Training of patients or carers in the administration of intravenous medicines must comply with published RCN standards and should be carried out by a member of the OPAT team with the relevant competencies. Both the OPAT nurse specialist and patient/carer must be satisfied of competence and this should be documented.

3.14 All administered doses of intravenous antimicrobial therapy should be documented on a medication card or equivalent, including doses administered out of hospital.

3.15 The first dose of a new antimicrobial should be administered in a supervised setting. This may be the patient's own home if the antimicrobial is administered by a person competent and equipped to identify and manage anaphylaxis.

Figure 4. Antimicrobial management and drug delivery. Text in *italics* donates a previous recommendation that has been amended.
3.4 Monitoring of the patient during OPAT

3.4.1 General considerations

There were only a small number of new papers (n=11) relating specifically to monitoring patients during OPAT, although papers from other sections also provided useful new data for this domain. The risks associated with OPAT are well described; overall at least 25% of patients on OPAT will develop complications of therapy, ranging from mild adverse reactions to life-threatening line infections. A high proportion of patients also experience risks associated specifically with prescription of their antimicrobial agents, including potential drug interactions, issues with therapeutic drug monitoring and need for dose changes associated with changes in renal function, and the importance of a multi-disciplinary approach to monitoring, with the inclusion of a pharmacist has been emphasized.

The previous GPRs stated that patients with skin and soft tissue infections should be reviewed daily to ensure that they are switched from intravenous to oral antibiotics as soon as this is clinically appropriate. This remains an important recommendation. Kameshwar and colleagues (2016) undertook a health economic study of patients managed via Hospital-in-the-Home (HITH) in Australia. They found that patients managed through HITH had a longer median duration of intravenous therapy than equivalent inpatients (7.5 vs 5.8 days respectively) and that this difference offset any financial savings associated with home therapy. They speculated that the longer duration of antimicrobial therapy in HITH could have arisen due to less frequent clinical reviews and also the possibility that clinicians in hospitals were under greater pressure to free up hospital beds while HITH clinicians may have adopted a more risk-averse approach.

Paediatric data show that significant adverse events due to antimicrobials are infrequent in pOPAT. Readmissions due to drug side effects only occurred in 0-2.3% of patients described in two recent pOPAT cohorts. However, a retrospective case series of children managed between 2008 and 2015 describes a 13.5% readmission rate due to antimicrobial side-effects. Oxacillin was associated with significantly higher rates of adverse drug events (transaminitis, fever and rash) compared to ceftriaxone. High rates of adverse drug events have also been described with piperacillin/tazobactam (fever, transaminitis, neutropenia, rising inflammatory markers), with 26% of children readmitted due to drug side effects in that cohort. Adverse events occurred after a minimum of 14 days of treatment in 93% of cases.
3.4.2 Laboratory test monitoring

Lack of availability of recommended laboratory tests has been shown to be an independent risk factor for increased readmission rates for OPAT patients.66 Keller \textit{et al.} (2018) prospectively analysed adverse drug events in a cohort of 339 patients discharged to OPAT from two academic centres; 18% developed an adverse drug event, which were more likely to occur within the first 14 days of treatment. However other groups reported increasing risk of adverse events with increasing duration of intravenous antimicrobial therapy.144 Briggs \textit{et al.} (2013) reported late-onset reactions to β-lactam antibiotics: 11 out of 163 patients developed symptoms such as fever, rash or abdominal pain during drug administration, or laboratory abnormalities including thrombocytopenia, leucopenia or abnormal liver function tests, with a median duration of therapy of 25 days prior to development of the adverse event.145 Severe neutropenia is a late complication of ceftriaxone, usually occurring after 28 days of therapy.146 Weekly monitoring of full blood count may also detect developing eosinophilia which is a predictor for hypersensitivity reactions: Blumenthal \textit{et al.} (2015) identified eosinophilia in 210 of 824 (25%) patients receiving OPAT, with a median time to eosinophilia of 15 days (IQR 8-22).147

The previous GPRs recommended weekly blood test monitoring for short-term OPAT patients but did allow a reduction in frequency of monitoring to twice monthly for longer term stable patients. However, given evidence of increasing adverse events with treatment duration and the importance of early detection of these adverse events, the new recommendation is that all OPAT patients have blood test monitoring at least weekly regardless of treatment duration.

3.4.3 Antimicrobial switches

Lee and colleagues (2015) reviewed outcomes of OPAT with β-lactam antibiotics. In 400 OPAT courses, antibiotic switches were required in 50 episodes of which 37 were accomplished without readmission. The authors stressed the importance of close monitoring and the involvement of the infection specialist in optimising antimicrobial therapy to minimise patient morbidity and the need for readmission.148

3.4.4 Evidence gaps

Further information is required regarding the efficacy and potential adverse reaction profile of prolonged use of the newer long acting semi-synthetic glycopeptides and optimal monitoring strategy. This is also true for other new agents. Another interesting area relates to patient involvement in monitoring, both in terms of awareness and early reporting of symptoms and
also patient access to results through new web-based systems such as those used in
diabetes or renal medicine. One key aim of OPAT is personalised, person-centred care and
involvement in monitoring their therapy may be useful in promoting patient engagement in
their care and also contributing to earlier detection of adverse reactions.
4.1 Patients with skin and soft tissue infection should be reviewed daily by the OPAT team to optimize speed of intravenous to oral switch.

4.2 There should be a weekly multidisciplinary meeting/virtual ward round, including as a minimum the OPAT specialist nurse, OPAT physician and antimicrobial pharmacist, to discuss progress (including safety monitoring and outcome) of patients receiving OPAT.

4.3 Patients receiving in excess of 1 week of antimicrobial therapy should be regularly reviewed by a member of the OPAT team, in addition to discussion at the weekly multidisciplinary team meeting. The frequency and type of review should be agreed locally.

4.4 Patients should have blood tests performed at least weekly. Blood tests should include full blood count, renal and liver function, C-reactive protein (CRP) and therapeutic drug monitoring where appropriate. Other tests may be required for specific indications or therapies (e.g. creatinine kinase for patients receiving daptomycin, lactate for patients receiving linezolid).

4.5 The OPAT team is responsible for monitoring clinical response to antimicrobial management and blood investigations, and for reviewing the treatment plan, in conjunction/consultation with the referring specialist as necessary.

4.6 There should be a mechanism in place for urgent discussion and review of emergent clinical problems during therapy according to clinical need. There should be a clear pathway for 24 h immediate access to advice/review/admission for OPAT patients agreed with the referring clinician, and this should be communicated to the patient both verbally and in writing.

Figure 5. Monitoring of the patient during OPAT. Text in italics donates a previous recommendation that has been amended.
3.5 Outcome monitoring and clinical governance

3.5.1 Outcome monitoring for quality, service development and research

Regular reviews of the OPAT service are essential to review the activity of the service, and to benchmark it against national guidelines and good practice recommendations. This is only possible if data are collected prospectively at the level of the individual patient, using an electronic database or online outcome registry. In addition to clinical outcomes such as response to treatment and adverse events, it is also important to collect data on the OPAT episode, for example, patient demographics, antimicrobial agent(s) used, duration of treatment, method of OPAT used, type of line and infusion device, etc. It may also be useful to record other data for the purpose of local service development, for example, type of transport used by OPAT patients, time taken for antimicrobial administration, other interventions performed during OPAT attendance (e.g. podiatry review, dressing changes on ulcers, monitoring of anticoagulation, etc).

The importance of effective antimicrobial stewardship is now well recognised and a key UK government and NHS priority. Gilchrist and Seaton (2015) reviewed antimicrobial stewardship as it applies to OPAT and proposed an OPAT antimicrobial stewardship checklist, comprising checks relating to the individual patient, OPAT antimicrobial use, staffing and links to organisational governance procedures and policies. Again, there is a need for prospective data collection to quality-assure OPAT services from an antimicrobial stewardship perspective.

Finally, collection of rich prospective patient data provides the opportunity to study factors influencing patient outcomes such as those described earlier in the patient selection topic. It is clear that we do not fully understand predictors of success or failure of OPAT and this must be a priority for further prospective research.

3.5.2 Standard outcome measures

The previous OPAT GPRs suggested that it would be useful to develop standardised outcome measures for OPAT. These outcome criteria were divided into patient infection and OPAT service related outcomes and have been used by UK OPAT centres and the BSAC OPAT National Outcomes Registry to drive improvement and allow benchmarking exercises. However there remains a lack of standardisation and clarity as to which outcomes are measured. For example, a patient may be switched from one antimicrobial to another due to a recognised side effect. This is managed as part of the OPAT management plan resulting in successful treatment. Under the previous outcome recommendations this would be classed
as partial success. The authors also recognised that patient outcomes are very much dependent on the individual treatment goal or “intent” of therapy. This is particularly relevant where short- or longer-term control of the infection is the only realistic aim of therapy. The NORS outcome measures include ‘death’ as both a patient infection ‘failure’ and an OPAT ‘failure’ which may not be appropriate where the aim of OPAT for that individual is palliation or long-term suppression. The authors therefore concluded it would be helpful to include outcomes for those clinical episodes where cure is not achievable.

In addition, there is increasing literature to suggest that OPAT adverse events should be reviewed in line with local organisation’s antimicrobial stewardship programmes for example, healthcare-associated infections such as *Clostridium difficile* associated diarrhoea and blood stream infections. Here we propose new treatment goals to be considered at the outset of an OPAT treatment course and updated OPAT outcomes (Table 2). In addition to patient outcomes, as in the last GPRs, it is also recommended that OPAT teams monitor specific adverse outcome (see recommendation 5.2).

Table 2: Proposed treatment goals and OPAT service outcomes.

<table>
<thead>
<tr>
<th>Treatment Intent / Treatment Goal at the end of OPAT therapy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure</td>
<td>To complete an agreed OPAT duration of therapy on either intravenous and/or complicated oral antimicrobials with no requirement for long term antimicrobial therapy.</td>
</tr>
<tr>
<td>Improvement</td>
<td>To complete an agreed OPAT duration of therapy on either intravenous and/or complicated oral antimicrobials (a) as part of an agreed surgical infection management plan with further surgery planned or (b) where there is a requirement for subsequent long term or an extended course of oral suppressive antimicrobial therapy, or (c) where potentially infective prosthetic material is still in situ.</td>
</tr>
<tr>
<td>Palliation</td>
<td>To undertake a course of OPAT on either intravenous and/or complicated oral antimicrobials where there are agreed ceilings of care due to co-morbidities with death being the likely outcome.</td>
</tr>
<tr>
<td>OPAT Service</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Treatment Goal attained - uncomplicated</td>
<td></td>
</tr>
<tr>
<td>Completed OPAT therapy as per treatment intent with:</td>
<td></td>
</tr>
<tr>
<td>• no unplanned changes in antimicrobial agent</td>
<td></td>
</tr>
<tr>
<td>• no adverse events</td>
<td></td>
</tr>
<tr>
<td>• no planned or unplanned readmission related to the current OPAT episode</td>
<td></td>
</tr>
<tr>
<td>• no readmission of 24 hours or more for unrelated event (i.e. day case/ overnight stay for another medical problem allowed)</td>
<td></td>
</tr>
<tr>
<td>Treatment Goal attained - complicated</td>
<td></td>
</tr>
<tr>
<td>Completed OPAT therapy as per treatment intent but with one or more of the following:</td>
<td></td>
</tr>
<tr>
<td>• unplanned changes in antimicrobial agent</td>
<td></td>
</tr>
<tr>
<td>• any adverse event including readmission for less than 24 hours related to the current OPAT episode</td>
<td></td>
</tr>
<tr>
<td>Treatment goal not attained</td>
<td></td>
</tr>
<tr>
<td>• Failure to complete planned OPAT therapy for any reason other than readmission due to unrelated event</td>
<td></td>
</tr>
<tr>
<td>• Worsening of infection requiring readmission</td>
<td></td>
</tr>
<tr>
<td>• Readmission for 24 hours or more for any cause related to OPAT including adverse events</td>
<td></td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
</tr>
<tr>
<td>Readmission for 24 hours or more due to unrelated event</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
</tr>
<tr>
<td>Death due to any cause</td>
<td></td>
</tr>
</tbody>
</table>

3.5.3 Patient experience

A major advantage of OPAT has always been the opportunity to tailor treatment regimens to individual patients, taking into consideration their circumstances and preferences. Although many studies report patient experience surveys there has been a lack of in-depth qualitative analysis of the experiences and views of OPAT patients and family members, until two recent publications.\(^ {149,150} \) Castor et al. (2018) undertook 37 qualitative interviews with members of twelve families of children receiving home therapies. They identified three essential themes: strengthening family life, promoting health and creating alliances and stressed the importance of developing good relationships between family, home care service
and hospital, and of paying close attention to the needs of each family member to ensure a positive experience for all. Twiddy et al. (2018) also undertook semi-structured interviews with 28 adult OPAT patients, as well as a focus group of 4 patients. They identified two key themes on qualitative analysis. The first comprised functional aspects of care, including the subthemes of ‘being at home but not well’, ‘convenience and flexibility’, ‘location of care’ and ‘is it safe?’ The second theme was relational aspects of care: one important element of this was a desire amongst patients for clear communication with staff who knew them to give patients confidence to collaborate in their own care. The authors then used a discrete choice experiment to identify overall patient preferences regarding OPAT. Although the most favoured model of OPAT was the visiting nurse model administering therapy at home, there was sufficient heterogeneity for the authors to conclude that services should ideally offer a range of OPAT delivery models.

3.5.4 Evidence gaps

Although there are some recent publications focusing on patients’ experiences and perspectives of OPAT, there remains a need for further research in this area, particularly relating to patient self-administration using elastomeric devices and portable infusion pumps. Further quality of life studies comparing OPAT with hospitalisation may support improved patient selection for OPAT and contribute to optimising the patient experience on OPAT.
5.1 Data on OPAT patients should be recorded prospectively for service evaluation and quality assurance including audit. A local database would facilitate this process. This information should be shared with all relevant stakeholders, including referring clinicians and general practitioners and may contribute to a national registry.

5.2 Standard outcome criteria should be used on completion of intravenous therapy and these should relate to patient specific goals of therapy. Data on readmissions, death during OPAT, adverse drug reactions, vascular access complications and healthcare associated infections, e.g. Clostridium difficile-associated diarrhoea and Staphylococcus aureus bacteraemia, should also be recorded.

5.3 Risk assessment and audit of individual processes (particularly new processes) should be undertaken as part of the local clinical governance programme.

5.4. Regular surveys of patient experience should be undertaken in key patient groups (e.g. short-term treated groups such as those with soft tissue infection and longer-term treatment groups such as those with bone and joint infection).

5.5 There should be an annual review of service outcomes to ensure compliance of the service to national recommendations.

5.5 Each member of the OPAT team is responsible for personal continuing professional development relating to best clinical practice.

Figure 6. Outcome monitoring and clinical governance. Text in *italics* donates a previous recommendation that has been amended.
4. Conclusions

OPAT is likely to continue to grow in the UK and internationally, driven by a large body of evidence that it is clinically and cost effective, and preferred by patients. The literature review for this update has illustrated the increasing diversity of OPAT services, including an expansion of services based in the community and in acute ambulatory care units.

As with the previous GPRs, further studies have demonstrated the critical importance of a formal OPAT service with a dedicated OPAT team and clear links to organisational governance structures. Complications occur while patients are receiving OPAT and that processes must be in place to ensure timely and accurate management. The evidence supports improved outcomes for patients when clinicians with expertise in OPAT have continuing involvement in their care. Furthermore, antimicrobial stewardship is now a high priority for healthcare organisations and OPAT has a clear role to play in optimising this. Unsurprisingly the literature review included consideration of stewardship in every section of this update. One key consideration is the use of oral therapy in preference to IV where appropriate and OPAT teams may contribute to safe administration of such agents as an extension of their role beyond parenteral therapies.

This update includes some changes from the previous GPRs. Firstly, this update combines both adult and paediatric OPAT in recognition that the principles of safe and effective OPAT are the same in these two groups. When considering the OPAT team, there is a novel concept of the OPAT 'practitioner' with a blurring of the professional boundaries between members of the team and a recognition that competence in different aspects of delivering OPAT is not restricted by job title. In patient selection, the literature review highlighted a move away from using rigid selection criteria relating to infection parameters and social factors to a more individualised approach incorporating consideration of co-morbidities and recognition that different patient groups may be better suited, or less suited, to specific antibiotics and/or specific delivery models.

With the increasing use of continuous infusion devices there is a need for robust data on stability of antimicrobial agents, particularly in the 'real life' situation where the device may be maintained near body temperature for prolonged periods. In this update of the GPRs the required standard of stability testing is set deliberately at a high level, that of the BSAC Drug Stability Testing Programme, and we do need to work towards obtaining this robust data for a wider range of antimicrobial agents.

In terms of monitoring during OPAT, the requirement for weekly blood tests in patients on prolonged OPAT courses is an evidence-based change from the previous
recommendations. Finally, there is the recognition that OPAT may be used in situations
where the anticipated outcome is not cure of infection, particularly with increasing use of
prosthetic devices in orthopaedics or vascular surgery and use of OPAT for suppression of
infection or palliation.

The initial GPRs were intended to serve as a practical resource to help teams to
develop or review their OPAT services. This update retains the same practical format and
will also serve as a useful summary of the literature relating to OPAT since the publication of
the previous recommendations.

5. Acknowledgements

We thank Dr Vittoria Lutje for completing the literature searches and to colleagues who
responded to the consultation and provided feedback about the recommendations.

6. Funding

The OPAT GPRs were produced by a working group on behalf of the BSAC. BSAC provided
administrative and logistic support for the working group’s activities but had no involvement
in the content of the recommendations.

7. Transparency Declarations

To be completed.

8. References

1. Bryant PA, Katz NT. Inpatient versus outpatient parenteral antibiotic therapy at home
for acute infections in children: a systematic review. Lancet Infect Dis 2017; 10.1016/s1473-
3099(17)30345-6.

3. MacKenzie M, Rae N, Nathwani D. Outcomes from global adult outpatient parenteral
antimicrobial therapy programmes: a review of the last decade. Int J Antimicrob Agents
2014; 43: 7-16.

and acceptability of community intravenous antibiotic service models: CIVAS systematic

5. Patel S, Burzio V, Green H et al. The Impact of Pediatric Outpatient Parenteral
Antibiotic Therapy Implementation at a Tertiary Children's Hospital in the United Kingdom.
The Pediatric infectious disease journal 2018;
https://dx.doi.org/10.1097/INF.0000000000002031.

77. Dobson PM, Loewenthal MR, Schneider K et al. Comparing injecting drug users with others receiving outpatient parenteral antibiotic therapy. Open Forum Infectious Diseases 2017; 4 (4) (no pagination).

ceftriaxone, a review.

Figure 1. Flow diagram illustrating process of the literature search.

- Literature search
 1 July 2010 to 31 August 2018
 (n=3680)

 Excluded (n=3545)
 Non-relevant
 Conference proceedings
 Duplicates

 Included (n=315)

 - OPAT Team & Service structure (n=28)
 - Patient selection (n=31)
 - Antimicrobial management & drug delivery (n=64)
 - Monitoring of the patient during OPAT (n=11)
 - Outcome monitoring & clinical governance (n=34)
 - OPAT for specific infections (n=43)
 - General (n=41)
 - Paediatrics (n=63)
Supplementary Table S1. Search criteria used for evidence identification from one of the selected databases (EMBASE).

<table>
<thead>
<tr>
<th>Search Engine</th>
<th>#</th>
<th>Search term</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBASE</td>
<td>1</td>
<td>OPAT.mp.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>OHPAT.mp.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>"Outpatient parenteral antibiotic therapy".mp.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>"hospital in the home".mp.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>home infusion therapy/</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>((Outpatient or Home) and parenteral and (antibiotic or antimicrobial or antifungal or antiparasitic or antibacterial or antiviral or antiinfective) and (therapy or treatment)).ab. or ((Outpatient or Home) and parenteral and (antibiotic or antimicrobial or antifungal or antiparasitic or antibacterial or antiviral or antiinfective) and (therapy or treatment)).ti.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>((outpatient or home) and parenteral and (antibiotic or antimicrobial or antifungal or antiparasitic or antibacterial or antiviral or antiinfective)).ab. or ((outpatient or home) and parenteral and (antibiotic or antimicrobial or antifungal or antiparasitic or antibacterial or antiviral or antiinfective)).ti.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>"home parenteral therapy program*".ab. or "home parenteral therapy program*".ti.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>((outpatient or Home) and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or ((outpatient or Home) and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>"Outpatient parenteral antibiotics".ab. or "Outpatient parenteral antibiotics".ti.</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>(outpatient treatment and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or (outpatient treatment and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>(community-based and parenteral).ab. or (community-based and parenteral).ti.</td>
</tr>
<tr>
<td>13</td>
<td>("home treatment" and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or ("home treatment" and (intravenous or IV) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>("Home drug infusion" and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or ("Home drug infusion" and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>(Ambulatory and (intravenous or IV or parenteral) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or (Ambulatory and (intravenous or IV or parenteral) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(domiciliary and (intravenous or IV or parenteral) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or (domiciliary and (intravenous or IV or parenteral) and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>("Community intravenous antibiotic service" or CIVAS).ab. or ("Community intravenous antibiotic service" or CIVAS).ti.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>OVIVA.ab. or OVIVA.ti.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(IVDU and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ab. or (IVDU and (antibiotic or antimicrobial or antifungal or anti-parasitic or anti-infective or antiviral)).ti.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>clinical competence.mp. or clinical competence/</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>practice guideline/ or good clinical practice/</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>health behaviour.mp. or health behavior/</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>attitude to health.mp. or attitude to health/</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>health personnel attitude/</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>21 or 22 or 23 or 24 or 25</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>20 and 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>limit 20 to yr="2010 -Current"</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>limit 28 to human</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(cancer or childbirth or diabetes).ti.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>29 not 30</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>(Child or children or paediatric or pediatric or infant* or neonate* or babies or toddler* or newborn*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word]</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>31 and 32</td>
<td></td>
</tr>
</tbody>
</table>